Researchers demonstrate that COVID disinfectant works
A team of UCF researchers have proven the efficacy of a nanomaterial-based disinfectant they developed to combat the spread of the COVID-19 virus. Through their experiments, they found that the disinfectant was able to kill several serious viruses including SARS and Zika. The results of their findings were recently published in ACS Applied Materials and Interfaces.
“It is always a delight to have our research work featured in a reputed journal,” said Udit Kumar, a doctoral student in the Department of Materials Science and Engineering (MSE) and the lead author of the journal article. “Given the theme and possible impact of antiviral research in current times, our article will definitely aid our fight against global pandemics.”
The paper outlines the most recent study from a multidisciplinary team of researchers that includes Sudipta Seal, the chair of the MSE department, and Griff Parks, a College of Medicine virologist and director of the Burnett School of Biomedical Sciences. They experimented with the nanomaterial yttrium silicate, which has antiviral properties that are activated by white light, such as sunlight or LED lights. As long as there is a continuous source of light, the antiviral properties regenerate, creating a self-cleaning surface disinfectant.
“Yttrium silicate acts as a silent killer, with antiviral properties constantly recharged by the light,” Kumar says. “It is most effective in minimizing surface to the surface spread of many viruses.”
Kumar says their test of yttrium silicate in white light disinfected surfaces with high viral loads in approximately 30 minutes. Additionally, the nanomaterial was able to combat the spread of other viruses including parainfluenza, vesicular stomatitis, rhinovirus, Zika and SARS.
“This disinfectant technology is an important achievement for both engineering and health because we all were affected during the pandemic,” Seal says. “COVID is still ongoing and who knows what other illnesses are on the horizon.”
Other UCF researchers, including College of Medicine postdoctoral researcher Candace Fox ’16MS ’19PhD, nanotechnology student Balaashwin Babu ’20 and materials science and engineering student Erik Marcelo, are co-authors on the paper.
“This publication is the culmination of timely insight by the investigators as to the importance of rapid development of broad-spectrum anti-microbials, as well as hard work in the lab to show the potency of our new materials,” Parks says. “This is an outstanding example of the power of cross-discipline research — in this case, materials science and microbiology researchers from CECS and COM.”
The research is funded by the U.S. National Science Foundation’s RAPID program.
Seal joined UCF’s Department of Materials Science and Engineering and the Advanced Materials Processing Analysis Center, which is part of UCF’s College of Engineering and Computer Science, in 1997. He has an appointment at the College of Medicine and is a member of UCF’s prosthetics cluster Biionix. He is the former director of UCF’s NanoScience Technology Center and Advanced Materials Processing Analysis Center. He received his doctorate in materials engineering with a minor in biochemistry from the University of Wisconsin and was a postdoctoral fellow at the Lawrence Berkeley National Laboratory at the University of California Berkeley.
Parks is the College of Medicine’s associate dean for Research. He came to UCF in 2014 as director of the Burnett School of Biomedical Sciences after 20 years at the Wake Forest School of Medicine, where he was professor and chairman of the Department of Microbiology and Immunology. He earned his doctorate in biochemistry at the University of Wisconsin and was an American Cancer Society Fellow at Northwestern University.
Story Source:
Materials provided by University of Central Florida. Original written by Marisa Ramiccio. Note: Content may be edited for style and length.
For all the latest Health News Click Here
For the latest news and updates, follow us on Google News.