Site icon News Bit

Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system

Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system

Damages to the central nervous system (CNS), for example in the case of spinal cord injury, can result in permanent loss of sensory and motor function. It is because the severed axons are unable to regenerate. As of today, there are very limited options to help these patients regain their motor abilities. Scientists have been exploring ways to enable the regeneration of severed axons, with a view to developing viable treatments in the long term.

In a study using mice, a research team led by Cheng Associate Professor Kai LIU of the Division of Life Science, the Hong Kong University of Science and Technology (HKUST), untangled some of the complexities in the regeneration of severed axons. They found that the deletion of PTPN2, a phosphatase-coding gene, in neurons can prompt axons to regrow. When combined with the type II interferon IFNγ, it can further accelerate the process and boost the number of axons regenerated. The results have recently been published in the scientific journal Neuron.

The human nervous system is composed of two parts, namely the central and peripheral nervous systems. Unlike the central nervous system, peripheral nerves have stronger ability to regrow and repair by themselves after injury. Scientists have yet to fully understand the relationship between this self-repair and the intrinsic immune mechanism of the nervous system. Two mysteries the team wanted to resolve were how immune-related signaling pathways affected neurons after injury, and whether they could enhance axonal regeneration directly.

This study investigated whether the signaling pathway IFNγ-cGAS-STING had any role in the regeneration process of peripheral nerves. Researchers found that peripheral axons could directly modulate the immune response in their injured environment to promote self-repair after injury.

In previous research, Prof. Liu’s team had already demonstrated that elevating the neuronal activity and regulating the neuronal glycerolipid metabolism pathway could boost axon regenerative capacity. The current study is providing further insights into the search of treatment solutions for challenging conditions such as spinal cord injuries, with one possible option being the joining of several types of different signaling pathways.

The co-first authors of this project are Drs. Xu WANG and Chao YANG of HKUST. The work was done in collaboration with Prof. Zhong-Yin ZHANG of Purdue University alongside Profs. Ruohao WU, and Peiyuan QIAN, Jiguang WANG of HKUST.

Story Source:

Materials provided by Hong Kong University of Science and Technology. Note: Content may be edited for style and length.

For all the latest Health News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsBit.us is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – abuse@newsbit.us. The content will be deleted within 24 hours.
Exit mobile version