Quick News Bit

Novel method brings us a step closer towards cheap hydrogen

0
A step closer towards cheap hydrogen
The researchers produce hydrogen in the lab with a PEM electrolyser. Credit: Eduardo Gracia

Umeå University researchers have made a breakthrough that may make hydrogen—a clean, CO2-free fuel—more affordable. The team has developed a new method that improves how hydrogen gas is produced from water and electricity, a process that’s crucial in our shift toward a more sustainable society.

This major advancement comes from a study led by Eduardo Gracia, a researcher at the Department of Physics at Umeå University. The findings of the study have been recently published in Communications Engineering.

Hydrogen gas is an excellent energy source that can be used to replace fossil fuels. It is produced through a process called water electrolysis where water is split into hydrogen and oxygen. The process requires an electrocatalyst to facilitate the reaction, and nowadays the most efficient technology for such a process is the proton exchange membrane (PEM) water electrolysis.

Metal dissolution: An issue that must be tackled

However, hydrogen production via PEM water electrolysis has a significant issue—it requires the use of noble metals such as platinum, ruthenium, and iridium. Although these metals are good at their job, they are not only expensive and limited in supply, but ruthenium and iridium also tend to break down over time.

“The breakdown of noble metals, a phenomenon known as ‘metal dissolution,’ reduces the effectiveness of hydrogen production. It’s a problem that needs to be solved for us to fully take advantage of PEM technology,” says Associate Professor Eduardo Gracia.

Stabilizing noble metals

So, if PEM technology is expected to drive the transition towards a sustainable society, we first need to tackle the strong electrocatalysts degradation. But how? Well by trapping the highly active but expensive metal in a stable but inactive “scaffold.”

This is where the Umeå team’s breakthrough comes in. The researchers, led by Eduardo Gracia, developed a new scaffold—a kind of supporting structure—that can keep the noble metals stable even under tough conditions.

This scaffold is made of a mixture of tin, antimony, molybdenum, and tungsten oxides (Sn-Sb-Mo-W), which proved to be strong enough to protect not only the noble metals but also other components of the system from breakdown during the process.

By ensuring the noble metals can last longer, the team’s findings can make PEM technology more affordable and effective for large-scale, renewable hydrogen production. This represents a key step in making our transition to a more sustainable society a reality.

More information:
Alexis Piñeiro-García et al, A Quaternary mixed oxide protective scaffold for ruthenium during oxygen evolution reaction in acidic media, Communications Engineering (2023). DOI: 10.1038/s44172-023-00080-5

Provided by
Umea University


Citation:
Novel method brings us a step closer towards cheap hydrogen (2023, June 8)
retrieved 8 June 2023
from https://techxplore.com/news/2023-06-method-closer-cheap-hydrogen.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsBit.us is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment