Quick News Bit

Air Curtains can Prevent COVID-19 Spread in Hospitals

0

published by AIP Publishing, researchers in Japan developed a desktop air curtain system (DACS) that blocks all incoming aerosol particles.

“We envisage this system will be effective as an indirect barrier for use in blood-testing labs, hospital wards, and other situations where sufficient physical distance cannot be maintained, such as at a reception counter,” co-author Kotaro Takamure said.

An air curtain, or air door, is a fan-powered ventilation system that creates an air seal over an entryway. Hospitals use them to prevent ambulance fumes and other contaminants from reaching the inside of an emergency room.

One challenge in developing smaller air curtains is fully blocking emitted aerosol particles over time because it is difficult to maintain the air wall over a long distance. As a result, the devices gradually lose air-discharge intensity, creating a turbulent flow that allows infected aerosol particles to escape into the surrounding environment.

The DACS contains a discharge and suction port to help address this problem.

A generator at the top of the DACS produces the airflow, which is guided to the suction port at the bottom of the device. This prevents airflow dispersion, thus leading to the collection of all the aerosol particles at the suction port.

A high-efficiency particulate air (HEPA) filter can be installed inside the suction port for air purification.

The researchers are developing an accompanying virus inactivation system equipped with ultraviolet light that connects to the suction port. After the air is sanitized with the UV light, it is recirculated to maintain airflow of the air curtain and air pressure in the room.

The researchers tested their device by using an air compressor connected to a mannequin to simulate breathing.

Dioctyl sebacate, a widely used solvent that spreads easily, was added to the airflow to create aerosol particles. Particle image velocimetry and high-speed cameras were used to determine the DACS’s blocking effect.

The aerosol particles approaching the DACS abruptly bent toward the suction port, signifying that

air curtain flow fully blocked all incoming aerosol particles.

When the researchers placed the mannequin’s arm through the DACS to imitate a blood-collection scenario, they found the airflow above the arm was disrupted. However, the aerosol blocking performance remained unaffected.

The DACS was tested on patients during blood collection at Nagoya University Hospital. The researchers are looking at lowering the suction port, so the arm can be placed below the heart for proper blood collection.

Source: Eurekalert

For all the latest Health News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsBit.us is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment