Quick News Bit

Soft components for the next generation of soft robotics

0
Soft components for the next generation of soft robotics
An assembled soft dynamic DEA valve. Credit: Siyi Xu/Harvard SEAS

Soft robots driven by pressurized fluids could explore new frontiers and interact with delicate objects in ways that traditional rigid robots can’t. But building entirely soft robots remains a challenge because many of the components required to power these devices are, themselves, rigid.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed electrically-driven soft valves to control hydraulic soft actuators. These valves could be used in assistive and therapeutic devices, bio-inspired soft robots, soft grippers, surgical robots, and more.

The research was published in the Proceedings of the National Academy of Sciences (PNAS).

“Today’s rigid regulation systems considerably limit the adaptability and mobility of fluid-driven soft robots,” said Robert J. Wood, the Harry Lewis and Marlyn McGrath Professor of Engineering and Applied Sciences at SEAS and senior author of the paper. “Here, we have developed soft and lightweight valves to control soft hydraulic actuators that open up possibilities for soft on-board controls for future fluidic soft robots.”

Soft valves aren’t new but so far none have achieved the pressure or flow rates required by many existing hydraulic actuators. To overcome those limitations, the team developed new electrically powered dynamic dielectric elastomer actuators (DEAs). These soft actuators have ultra-high power density, are lightweight, and can run for hundreds of thousands of cycles. The team combined these new dielectric elastomer actuators with a soft channel, resulting in a soft valve for fluidic control.







Motions of dynamic single-DEA actuator. Credit: Siyi Xu/Harvard SEAS

“These soft valves have a fast response time and are able to control fluidic pressure and flow rates that match the needs of hydraulic actuators,” said Siyi Xu, a graduate student at SEAS and first author of the paper. “These valves give us fast, powerful control of macro-and small-scale hydraulic actuators with internal volume ranging from hundreds of microliters to tens of milliliters.”

Using the DEA soft valves, the researchers demonstrated control of hydraulic actuators of different volumes and achieved independent control of multiple actuators powered by a single pressure source.

“This compact and light-weight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future on-board motion control of soft fluid-driven robots,” said Xu.

The research was co-authored by Yufeng Chen, Nak-Seung Patrick Hyun, and Kaitlyn Becker.


RoboBee powered by soft muscles


More information:
Siyi Xu et al, A dynamic electrically driven soft valve for control of soft hydraulic actuators, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2103198118

Provided by
Harvard John A. Paulson School of Engineering and Applied Sciences


Citation:
Soft components for the next generation of soft robotics (2021, September 9)
retrieved 9 September 2021
from https://techxplore.com/news/2021-09-soft-components-robotics.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! NewsBit.us is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment